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Ghost elimination h quantum gravity 

M Nouri-Moghadam and J G Taylor 
Department of Mathematics, King’s College, Strand, London WC2R 2LS, UK 

Received 26 June 1975 

Amact. We study the problem of quantizing the gravitational field in interaction with 
scalar mesons when gravity has certain non-minimal terms in addition to Einstein’s 
Lagrangian. The extra poles in the graviton propagator are described and we attempt to 
remove the ghost particle in lowest-order graphs. We find that this is not possible, and 
exhibit a 2-meson-l-graviton scattering graph whose S matrix contribution has a ghost 
pole at the 2-meson threshold. We also note that if graviton ghost cancellation were possible 
the usual renormalizability criterion is required to prevent meson ghost appearances. 

M ~ Y  attempts have been made recently to quantize gravity (’t ~ O o f t  and Veltman 
1974, Capper and Duff 1974, Capper et aZl974, Deser and van Nieuwenhuizen 1974% b, 
~e Win 1964,1967, Nouri-Moghadam and Taylor 1975a, b). These stem from various 
reasons, from the extreme physical one of attempting to deal with matter at the end- 
point of collapse in a black hole to the mathematical problem of extending quantization 
schemes to a particular sort of gauge theory. These attempts have now been recognized 
as being unsuccessful (Nouri-Moghadam and Taylor 1975% b) since the necessary 
counter terms to make predictions of the theory finite have either proved infinite in 
number or correspond to ghosts. We must still attempt to quantize gravity, hOwever, 
sinee the reasons for considering the problem in the first place are pressing. In this 
Faper we wish to continue the quantization scheme by taking the ghosts seriously into 
~ m m t  and trying to find conditions on the stress-energy tensor of matter so that the 
ghost contributions are cancelled completely. 

we start with the Einstein Lagrangian for the gravitational field coupled minimally 
to matter contributions, as dictated by the spin 2 character of the gravitational field. 
It possible to add non-minimal contributions to the Lagrangian. However it was 
mated out by Feynman (1963, 1962-3 unpublished) and others (Gupta 1968) and 
shown more recently by Deser (1970) by a very elegant argument, that such terms do 
not if a theory of spin 2 massless particles is allowed to have any non-trivial self- 
‘[eranion generated by gauge invariance arguments from an initially free theory. 
‘lS has been extended by Boulware and Deser (1974 unpublished) to prove that the 

effects in a gauge invariant S matrix theory are those arising purely from the 
Lagrangian with added minimally coupled matter terms. 
been shown that after field quantization the counter terms required to remove 

all :!le-looP ultraviolet divergences are of non-minimal character, such as R2 or 
R’E in the usual notation (De Witt 1964, 1967). It is not possible to stop the analysis 
Ofthe u*traviolet divergences at this point. Infinities from both higher loops and single 
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loops containing one or more vertices generated by the counter terms mu$ 
considered. The latter have been considered briefly elsewhere (Nouri-Moghah 
Taylor 1975% b) and have been shown to require an ever increasing number ofcountp 
terms. This is under the assumption that the initial single-loop counter terms mb 
treated purely by perturbation theory. 

The terms R2 and R,,RPV involve terms quadratic in the field variables whichm 
of fourth order in their derivatives. The treatment of such contributions by perturbah 
theory would appear to be much at variance with that usual in canonical quant&tioa 
However if the total Lagrangian is treated by standard methods (Pais and UhlmM 
1950) it will produce ghost particles in the spin 2 field with negative energies and nom 
These destroy the unitarity and positive energy spectrum of the theory. 

The only way open to proceed with a quantum theory of gravity based on 
invariance premises is to attempt to remove the ghost contributions by suitable&+ 
coupling. We will attempt to analyse that question here by looking at ghost 
tributions in lowest-order perturbation theory. This is itself of limited validity but Q 

give some indication of whether any success can be achieved, and what the sort d 
condition might be to obtain success to all orders. 

M Nouri-Moghadam and J G Taylor 

2. n e  graviton-ghost propagator 

Let us consider the gravitational field g,,(x) and its associated tensors gay, REh6, R,,, 
R Using the usual notion (De Witt 1964, 1967). We will attempt to quantize the field 
as described by the Lagrangian density 

L = J(-g)(R+aR2+4bR,,R”’). (211 

g,v = vpv+hpv 

We expand the field variable as 

where h,, is the field to be quantized and v,” is the Minkowski background. TO fi?l 
order in h,, we have that (’t Hooft and Veltman 1974) 

gpq = v p v  - h,, 
J - g  = I + ) h , ~  

where indices in h,, are raised or lowered by I?,,,. To the same order of approximation 
R = ‘ h a  h5.w-lh5 h a . v - L h a  h S . p + -  v a  

4 a,, F 4 a,v p 2 a , p  p : h i  ha,v  

R2 = (hj:; - 
R,vR” = %h:,p- hi,,?- 4.w, + h,,,;)(k;,,, - h;,,6 - hC,,a + hpv,j). 

To equation (2.1) we must add a symmetry breaking term which fixes the approPfi@ 
gauge; this we take to be the harmonic gauge, so we have to second order, in addtion 
to that from equation (2.1), the symmetry breaking term 

L’ = -&hi,” -$hh:,J(hi,, -$hi,,). 
We can thus calculate the second-order term in h in (L+ L1) to be, to within tea 
which are total derivatives (which we can neglect), the quadratic form 

( L  + L’) = h a S ~ 4 k S . , v h ~ v  
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WkS 

~ [(U + b)g2 + k n ] 6 , @ , ,  4- $bu2 - a n ) ( 6 a p 8 P v + 8 B p 6 a v )  
4,NP 

+(U + 2b)aaasa,,& - (a + b ) D ( 6 a @ p a V  + 6 p v a a a d  

-tb0(6,,aPa,, + 6,,aaa, + 6aVa ,dp  + 6 , p a a a v )  ( 2 . 2 )  

~~S a, = a/ay and = Bada. The total graviton propagator Qpv’Ba is thus the 
inverse of equation ( 2 . 2 )  : 

44,a8,pVQ”V+’a = &6,P6pa + S/6Bp) = Qpa’pv 4 4 ) p v . a ~ .  ( 2 . 3 )  

ne bgra@m ( 2 . 1 )  which we are quantizing has quartic derivatives in both the 
intmaion and the free-field parts. The former presents great difficulties due to the 

lack of an unambiguous ordering. A similar difficulty arises in the nonlinear 
theory raylor 1974 and references therein), but can be removed there, at least 

lowest order in perturbation theory, by careful use of the s u ( 2 )  X su(2) symmetry 
d&e theory. The term proportional to d4(0), also arising from the derivative inter- 
aion, was shown by Taylor (1974) to be cancelled to all orders (see also Keck 1 9 7 1 ) .  
We note that the J4(0) terms are automatically cancelled (Capper and Liebrandt 1973) 
by the dimensional regularization method we use later, though that is no true justi- 
fication for their neglect. 

There are other difficulties associated with the quantization of equation (2.l)tS. 
but we will tum directly to the details of the Feynman propagator for equation (2.1) 
without discussing these further, since they add little to the problem. In order to invert 
F‘&) we note that it would be possible to use the method of Rivers ( 1 9 6 4 ) ,  though since 
that is only for fields with a given mass we will use a more direct approach here. We 
represent it as a linear combination of a set of six fourth-rank tensors TI . . . T6 defined 
bY 

T,afiB,rv = p P p v  

T 2 a h v  = % p , j 6 8 v  + p6P/ r )  

T 3 a h  = , y b a p a v  

T ‘ a h v  = gpvaaaP 

T5aS.pv = a a a P a q v  

T s a P ~ p v  = $ p p d a a v  + p a P a p  + 6 P q y a v  + 6 8 v a a a p ) .  

‘Intbe present situation the ordering problem is decidedly non-trivial. We have considered it briefly else- 
yherethOua without success either for the [S3(0)]* terms or the further S4(0) terms. Here we will not discuss 
lbgc ierms but will tacitly assume that they are cancelled completely by suitable conditions. Only 

have obtained a sensible theory at the S matrix or Green function level will we be at liberty to re- 
!: ’? ap though the operator structure to unravel the appropriate ordering arrived at implicitly. ’ 

consider the framework in which we quantize equation (2.1). This has earlier been dis- 
-bY pais a d  Uhlenbeck (1950) and more recently by Kiskis (1974), though the latter was only for the 
-situation. If the part of the action A quadratic in the fields Q, is @PQ, then the propagator for 

caialations is thus the inverse of P, with the usual Feynman ir prescription. This agrees with 
km Of 

(1973, unpublished) in the zero-mass case. The particle interpretation of the quantized 
hextended from the zero-mass case of Taylor to the more general nonzero mass situation 

Of van Dam and Veltman (1970), and Boulware and Deser (1972) though we will not go into 
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These have the multiplication table contained in table 1. Since this table is closedhi 
thus possible to write the general expression 

M Nouri-Moghadam and J G Taylor 

6 

(24 Q = 2 AiT, 
i =  1 

and obtain a set of six equations from equation (2.3) and the form (2.4). This wd 
equations is 

( b O Z - i o ) A z  = 1 

2bA2 = -$A6 

GO +(3a+4b)O2]A1 +$IJ2A,+ [ (a+ b ) I J 2 + $ O ] A 2  = 0 

[(3a + 4 b ) 0 2  + $31, + Qo ' A ,  + $OA6 - (a + b ) O A 2  = I) 

[ - ( 3 a + 4 b ) O ] A 1  + ( - & 3 4 , - ( a + b ) O A 2  = 0 

(21 

-$JA,-2bOA,  = 0. 

Table 1. Multiplication table of the tensors T , ,  . . , T6. 

We may solve equations (2.5) to obtain 

A6 = -8bAZ 

A ,  = [ O ( b O - + ) ] - ' .  (10 

From equations (2.6) we see that there are three poles in Q which, in terms of the Fouria 
transform variable p with 0 = - p 2 ,  are at 

P 2  = 0, - 1/4b, 1/(6a+8b). $1 

The first of these is the physical graviton and the other two may be non-physid '& 
S e e  from the coefficient A,  in equations (2.6) that there are only two poles in this 
with opposite coefficients. Since the pole at p 2  = 0 is physical, that at p 2  = 
must be unphysical due to its residue with the wrong sign. We cannot say in Pd 
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le at p 2  = 1/(6a + 8b) will also be unphysical since both its value and residue ikpo bephysid for suitable choice of the constants a and b. This is a special case of sag * 4~ of Pais and Uhlenbeck (1950) that ghosts and physical particles interlace 
other. 

wecan investigate the situation more fully by evaluating the residues of Q at the 
w p o ~ ~ .  These residues are given in table 2, where we note in addition that the 

Ghost elimination in quantum gravity 

Table 2. Residues of the coefficients A , ,  . . . A ,  in the complete graviton propagator Q at 
the three poles it possesses in momentum space. 

Appropriate 
b'-,,m A I  4 A3 A4 A5 
position in pz 

4 - 4  -8(a+2b) -8(a+2b) 16(a+2b)/pZ 32b 
4 4 y b  $b 12862 326 
2 0 &3a+4b) $3a+4b) 4 ( 3 ~ + 4 6 ) ~  0 

0 
- 1 J4b -3  
1/(6a + Xb) -3 

mn AS actually has a double pole. The form of the graviton propagators near each 
ofthese poles is thus : 

(i) near p 2  = 0 

-4(3a + 4 b ) 2 b a ~ p ~ p ~ v ) I .  (2.10) 

30a& -O,,Op, - OavOpp 

rewrite the term in square brackets in (2.9) in the more recognizable form 

(2.1 1) 
P V =  Vpv+4bpppy. The expression (2.11) is the negative of the projection where 0 

OPhatorf0ra particle of spin 2 and (mass)2 of - 1/4b. The residue of Q at p 2  = - 1/4b 
ius has direct physical significance as massive spin 2 coupling (van Dam and Velt- 
?' 19707 Boulware and Deser 1972), though possibly for a tachyon-like particle if b 

Since the residue has the opposite sign to that at the massless pole then the 
mcie at P 2  - 1/4b is ghost-like even if it has a real mass, when b is negative. It 
" diminated. 
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n e  particle at the pole p2 = 1/(6a+ 8b) has a real mass if 

(Q 3a+4b > 0. 

Under that condition and the requirement that the graviton is only coupled to a coo 
sewed matter stress-energy tensor T,,, (since otherwise inconsistencies would &i 
the coupling to the zero-mass pole (Weinberg 1964)) we see that the residue at 
third pole has the correct sign and corresponds to a massive scalar particle C O U ~ ] ~ ~  
the trace of T,,. Thus there is no good physical reason for requiring this pole to 
absent if inequality (2.12) can be satisfied. We will turn, then, to the question ofcaa 
cellation of the residue in Q at p 2  = - 1/46, to find if any conditions on a and b allm 
this to be achieved. 

3. Ghost killing for gravity with scalar mesons 

We consider first the self-interacting scalar meson Lagrangian 

L = J(-g) (R+aR2 + b R , , R ” + + ~ ~ a v ~ ~ - ~ ~ 2 ~ 2  -114~~). 4 (3.11 

We will discuss the ghost-graviton contributions to lowest order in 1, and the gmi 
tational coupling constant; if these cannot be made to cancel then it is not ex@ 
that higher-order contributions will help except by some miracle. The relevant lowed- 
order vertices from equation (3.1) are obtained by making the substitution of g,,$ 
qrv+ h,,, as discussed at the beginning of 4 2, to give 

L = (1 +$hE+. . . ) [ ( $ d , ~ , d v ~ ( r l , ’ - h ’ v ) - f m 2 Q b 2 - ~ i ~ ~ 4 ] .  (31 

Adu, (U 

$Ju,[- m2 - (k1 k2)l+ )ki,k,, (3.4 
where k ,  and k ,  are the momenta of the two mesons and (a, p) is the tensor label of& 
graviton vertex. 

Let us consider the process of two-meson scattering with single-graviton ex&$ 
as described by figure 3. In lowest order only (3.4) will contribute, with value Pr@ 
portional to 

Thus the lowest-order graviton-four-meson vertex of figure 1 is proportional to 

and the graviton-two-meson vertex of figure 2 is proportional to 

h k 2 ~ -  6,,[m2 + (klk2)l}Q”Bpv[k:,k:, - 6,,(m + ktk: ) ]  

k , + k ,  = k : + k ;  = p. 

(34 
where 

Fngme 1. Four-meson-one- R p e  2. Two-meson-one- Figure 3. T w o - m ~ o ~  
graviton vertex, where brokm graviton vertex. with single-graviton exd@ 
lines represent gravitons, wavy 
lines represent mesons. 
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14 = and E = (k2 +m2)'I2. It is easy to see that the only term in (3.5) in- 
I $ i o g ( k , ~ 1 ) 2  arises from k , , k , , Q " ~ p ' k ~ p k ~ v  with value in terms of the expansion (2.4) 

d 
d,(g,kJ(k; k:)+$Az[(ki k: (k2k:) + (k i  k:) ( k  : M I  - A J ( ~  I k J ( k : P ) ( k b )  

- AJki  k : ) ( k i ~ )  ( k 2 ~ )  + A,(kip)(k,p)(k:p)(kbp)  - k [ ( k i k :  ) ( k , p ) ( k : ~ )  
t (k lk : ) (k fP) (k ,P)  + (k:k,)(k'P)(k:P) + (k,k:)(klP)(k,P)l. 

~ d ( R 2 t , z - k . k ' ) 2 + ( k 2 + m 2 + k .  k')2] = ~ , [ ( k , + m ~ ) ~ + ( k  . ~ c ' ) ~ ] .  

(3.6) 

meonly term in (3.6) depending on is that involving A , ,  and is equal to 

(3.7) 

wthe term (k . k'), is independent of the other term in equation (3.7) then it clearly 
ijnodpossible to remove the pole at p2 = - 1/4b in A, by any possible choice of a and 
b. In detail if we take 

k .  k' = k2 COS 0 

then the coefficient of cos2 0 in equation (3.6) is given by the last term of equation 
0.3 and is equal to 

fim $ = 4(k2+m2). Thus at the ghost pole position p2 = - 1/4b the residue in 
0.8) of the ghost pole is 

(i + 4bm2) 

dihiscan be made to vanish only if 

b = -(1/16m2). (3.9) 

&remaining residue at the pole can also be found to vanish identically if account is 
uen that equation (3.9) corresponds to the condition 

k2 = 0. (3.10) 
For then we obtain 

k l a  k 28 pB.pvk:pk:v  = m4(A, +A2-8m2A3+ 16m4A,-4m2A,) 

combined with the residues in table 2 gives 

m4(-$+4+$+3-8) = 0. 

at p2 = -1/4b arising from the remaining terms in (3.5) are also zero 
since they have values 

4 A 1  + +4+?+:-8) = 0 
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The residues at pz = 1/4b arising from the remaining terms in (3.5) are also Z*sa 
follows immediately from equation (2.9). Similarly the contribution from the F e h  
diagram arising by single-graviton exchange shown in figure 4 has zero r eslag 
though now the pole is unphysical at cos 0 = (1 + 2m2/kz), outside the physical regiaa 
The same situation occurs for the diagram of figure 5. 

M Nouri-Moghadam and J G Taylor 

'lu/ 
A 

I 

Figure 4. Two-meson scattering with single-graviton 
exchange exchange. 

Figure 5. Two-meson scattering with single-gah 

If we turn to the effect of the interaction 110' giving the vertex (3.3), we find tha, 
the diagrams of figures 6 and 7 are now appropriate. The first is proportional to 
Qoa.pvk,pk2v and the second to QeaSBB. These both have zero residues at p z  = -1146 
under the choice (3.9), as we showed in the previous paragraph. Similar cancehliap 
will occur for any higher-power interaction J( -g)anW added to (3.1). If n > 4 thk 
can only produce a coupling to a single graviton which in lowest order is proportional 
to (3.3), and hence has zero residue if equation (3.9) is satisfied. Since this givesw 
restriction on the constant a we can satisfy inequality (2.12) if in addition 

1 
a > -  12m2' 

3 - - - --< 3---< 
(3.111 

Figure 6. Meson-meson inelastic scattering through 
single-graviton exchange. exchange. 

Figure 7. Four-meson scattering with single-grad 

We conclude that there are no ghost difficulties from equation (3.7) in lowest-ord' 
(tree) graphs if (3.9) and (3.1 1) are both satisfied. 

In order to further test the possibility of ghost killing we consider the second-ordfl 
terms in the expansion of the Lagrangian (3.1) in powers of the quantized 
field hMv. We will choose a modification of the linear expansion, now taking the 
field variable Hpv  to be defined by 

PvJ - g = qPV + K H ~ ~  

J - g  = 1+iTrH+$[$TrH)2-TrH2]. (3.13) 

If we use equations (3.12) and (3.13) in (3.1), the interaction term with two mesons a& 

-+m'd)*[l-Tr H ) 2  -Tr H2]. (3.14 

(3.13 

so that in order h2 

two gravitons is solely 
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& to the contribution to the two-meson plus one-graviton scattering process 

@‘(kJQpV,be”’(k:) (3.15) 

Ghost elimination in quantum gravity 

’lea which has solely a single-graviton intermediate state, proportional to dW 8, 

Figare 8. Two-meson-one-graviton scattering with single-graviton exchange. 

wk k’ are the initial and final graviton momenta with polarization tensors epv(k,) 
&:) respectively. We choose for these e’&, , A) ev(k,, A)  and e“(k; ,  0) eb(k$ ,  0) 

&vely, where A and c take the values 1, 2 corresponding to the two possible 
Wsta t e s  of the gravitons. We take these vectors to be 

e@,,  1) = (0 ,4 ,  d k , ,  2) = (0, e,) where e, . k, = e , .  k, = 0. 

(hosing I = 1, Q = 2 we thus need to evaluate from (3.5) the quantity QIl2 , ,  and 
rartheghost pole at p 2  = - 1/4b this takes the value, with p = (m,O), of 

[$- 2(ele2)2] + non-singular contribution. (3.16) 

mustheresidue at the pole in (3.16) is nonzero, so it cannot be cancelled by any further 
moditions on a and b. Thus the graph of figure 8 has a ghost contribution which cannot 
beremoved internally. Nor will it be cancelled by the contributions from the graphs of 
~IJR 9. This can be seen from the fact that all the graphs of figure 9 have at least one 
rater of one graviton and two mesons. What is more, if all external particles are on 
&mass shell then at the ghost pole the two mesons at the vertex under consideration 
fialso be on-shell. This is immediate, since the ghost pole is at p2 = 4m2, if the mesons 
@external, and also if one of the mesons is external, since it is associated in all the 
ws under consideration with on-mass-shell mesons. Thus for the vertices in the 

2 
(p2 +bb) 

graph of figure 9 we have 

ki = k: = (m,~) ,  k i  = (0,O) 
U) 

(3.17) 

EactvefieX attached to the internal graviton propagator next to it has then the value 

near the pole in p 2  at 4m2, we have from (2.9) and (3.17) that 
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F i i  9. Two external graviton corrections to two-meson scattering through sin& 
graviton exchange. 

and 

Thus each vertex has a zero which is quadratic in the momenta of the external partids 
as they go to zero at the ghost pole. What is more the vanishing meson denominaton 
in the 2nd, 3rd, 4th, 5th, 6th and 7th graphs of figure 9 are also compensated for quad- 
ratically in the momenta by each vertex; for example in the 2nd graph of figure 9 then 
are two denominators which each introduce an inverse square power of momenta but 
there are four vertices which completely cancel this effect to give an overall zero COD- 

tribution. For this reason it is clear that all the graphs of figure 9 give no contribution 
on-mass-shell to the 2-meson-l-graviton S matrix element. Only figure 8 is left. 

4. Ghost killing for scalar mesons 

Earlier work (’t Hooft and Veltman 1974, Capper and Duff 1970, Capper et 01 1g74 
Deser and van Nieuwenhuizen 1974a, b, De Witt 1964, 1967, Nouri-Moghadam and 
Taylor 1975% b) on the quantization of Einstein’s gravitational theory has shown bat 
it is necessary to consider further terms in addition to those in (3.1). In particularthe 
additional contribution 

(D,D”4)* (4.11 

arose as a counter term necessary to remove certain divergences (’t Hooft and Velman 
1974, Nouri-Moghadam and Taylor 1975% b). This term will produce ghost mesons 
and so it is necessary to extend the discussion of the previous sections to this situuo* 
If we consider purely the graph of figure 10 then we can dispense with the gravitatiod 
field altogether, SO we are left with the Lagrangian 

L = $~(a,dW)~ +Kd,Q)Z-fm2m2 (411 
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constant e. The meson propagator is thus 

[c(p212 + p 2  - m21 - 

(a + - a- ) - [@' - a + ) - ' -Ip2 - U- ) ] 

Iorsome 

be written in partial fractions as 
- 1  -1 

*heffg, are the roots of 

c x 2 + x - m 2  = 0 

69 

X) bve values 
1 - -[-1+(1+4m~c)"~]. 

- 2c 

(4.3) 

(4.4) 

wenotetbat the root U +  is the one which takes the value m2 as c + 0. It is clear from 
(43)bat the pole at p 2  = a- corresponds to a ghost particle with the wrong sign of the 
d u e  as compared with the pole at p 2  = U,. This former pole is also tachyon-like 
for my value of e, so it clearly has to be cancelled. However the contribution from 
@re 10 gives no chance of such cancellation since the residue at the pole is a constant 
ppt ional  to (a, -a-)- '  to within factors such as 271, etc. There is no additional 
haor of k2 to cancel the pole by suitable choice of c. Thus the ghost pole is definitely 
p t  in lowest order. We conclude that the Lagrangian of equation (4.2) is physically 
matisfactory. 

Let us finally turn to the question as to whether or not the term (4.1) is forced on us 
*starting from the Lagrangian (3.1). This can be estimated by power counting, 
&g the complete form of the graviton propagator (2.4) with its b2)-' behaviour at 
b p 2 .  The counter term itself arose originally ('t Hooft and Veltman 1974) from 
bops such as that in figure 11 where the internal propagators for meson and graviton 
41 have asymptotic behaviour (p2)- ', and the two derivatives at each vertex were 
dhwed to act on the external field Q, on each external line. When the graviton propa- 
@OrM~ves asymptotically as ( P ' ) - ~  such a term is no longer divergent, so that its 
@ater term is not required. 

lo* Threemeson scattering through single- 
achange. meson propagator. 

Figure 11. Single-graviton self-energy correction to 

ne graviton propagator given by equations (2.4) and (2.6) appears only to behave 
'large P2 as b2)- ', due to the term A ,  T, . However this term does not contribute 
doe to gauge invariance. The effective vertices arising at each end of the graviton 
!op@tor will be transverse, and so give no contribution (this can be seen in a par- 
% @%e, when the graviton propagator couples directly to the conserved energy- 
momentum tensor). Thus the ( p 2 ) - 2  behaviour of the graviton propagator is justified. 

Thus the Lagrangian (3.1) is expected to be closed under renormalization effects. 
e Oote that it is not possible to add further polynomial interactions to (3.1) 
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for renormalizability of the theory, so that as far as the scalar meson is concernedls 
restrictions on the range of its interactions from renormalizability are identical to 
occurring without gravity being present. 

M Nouri-Moghadam and J G Taylor 

5. Conclusions 

We have analysed the quantized field theory of scalar mesons interacting with gravitm 
through a non-minimal Lagrangian in the gravitational field suggested by the ra 
attempts to renormalize Einstein's Lagrangian. The ghost in the graviton propawor 
has been found to be present in a certain lower-order graph which cannot be 
by any others of the same order. The ghost contribution corresponds to a polear 
threshold energy. If it were proposed to cancel this ghost contribution by higher+& 
graphs, this could only be achieved if the gravitational coupling constant took a pp 
ticular value. This may indeed be the case, but it would seem a very difficult mechania 
to expect to occur, and certainly difficult to investigate further. 

If such a ghost killing mechanism does work we have shown that the usual renormal. 
izability criteiki for the meson self-interaction have to be reserved unless additiod 
ghost killing occurs for a meson ghost arising from higher-order counter terms. 

Our general conclusion is that the Einstein scalar meson Lagrangian modified@ 
include non-minimal counter terms at the single-loop level is physically unsatisfaaq 
because of ghost contributions. We will have to consider other gravitational inter- 
actions, especially of photons and fermions, before we can finally conclude 16al 
quantization of the Einstein matter Lagrangian is impossible. We will discuss thar 
elsewhere. 
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