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Ghost elimination in quantum gravity

M Nouri-Moghadam and J G Taylor
Department of Mathematics, King’s College, Strand, London WC2R 2LS, UK

Received 26 June 1975

Abstract. We study the problem of quantizing the gravitational field in interaction with
scalar mesons when gravity has certain non-minimal terms in addition to Einstein’s
Lagrangian. The extra poles in the graviton propagator are described and we attempt to
remove the ghost particle in lowest-order graphs. We find that this is not possible, and
exhibit a 2-meson—1-graviton scattering graph whose S matrix contribution has a ghost
pole at the 2-meson threshold. We also note that if graviton ghost cancellation were possible
the usual renormalizability criterion is required to prevent meson ghost appearances.

1, Introduction

Many attempts have been made recently to quantize gravity ('t Hooft and Veltman
1974, Capper and Duff 1974, Capper et al 1974, Deser and van Nieuwenhuizen 1974a, b,
De Witt 1964, 1967, Nouri-Moghadam and Taylor 1975a, b). These stem from various
reasons, from the extreme physical one of attempting to deal with matter at the end-
point of collapse in a black hole to the mathematical problem of extending quantization
schemes to a particular sort of gauge theory. These attempts have now been recognized
a being unsuccessful (Nouri-Moghadam and Taylor 1975a, b) since the necessary
counter terms to make predictions of the theory finite have either proved infinite in
qumber or correspond to ghosts. We must still attempt to quantize gravity, however,
sce the reasons for considering the problem in the first place are pressing. In this
paper we wish to continue the quantization scheme by taking the ghosts seriously into
account and trying to find conditions on the stress—energy tensor of matter so that the
ghost contributions are cancelled completely.
We start with the Einstein Lagrangian for the gravitational field coupled minimally
;0 matter contributions, as dictated by the spin 2 character of the gravitational field.
!5 possible to add non-minimal contributions to the Lagrangian. However it was
f;;n“;ed out by Feynman (1963, 1962-3 unpublished) and others (Gupta 1968) and
o arisr:(i)fre recently by Deser (1970) by a.very.elegant argument, that such terms do
g a theory of spin 2 magsless .partlcles is allowed to have any non-trivial self-
This hag gegenerated by gauge invariance arguments from an initially free theory.
Igrangs :; extended by Boulw_are and Dt_aser (1974 unpubllshe_d) to prove that the
ey ectsina gauge invariant § matrix theory are those arising purely from the
Tthas beiranﬁxan with added mlmmall}f cogpled matter terms.
a Single-100n 8 lown 'that afFer field quantization the gqunter terms required to remove
‘ vR'“inthez utlrav101§t dlvergen'ces are of non-n‘gmmal ch'flracter, such as R? or
e wltrgn sual notation (De Wltt 1?64, 1967). 1t is not possible to stop the analysis
violet divergences at this point. Infinities from both higher loops and single
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60 M Nouri-Moghadam and J G Taylor

loops containing one or more vertices generated by the counter terms must also g
considered. The latter have been considered briefly elsewhere (Nouri-Moghadap a
Taylor 1975a, b) and have been shown to require an ever increasing number of County
terms. This is under the assumption that the initial single-loop counter terms can be

treated purely by perturbation theory. .
The terms R? and R R involve terms quadratic in the field variables which g

of fourth order in their derivatives. The treatment of such contributions by perturbatigg
theory would appear to be much at variance with that usual in canonical quantizatipy
However if the total Lagrangian is treated by standard methods (Pais and Uhlenbeg
1950) it will produce ghost particles in the spin 2 field with negative energies and noms
These destroy the unitarity and positive energy spectrum of the theory.

The only way open to proceed with a quantum theory of gravity based on gaye
invariance premises is to attempt to remove the ghost contributions by suitable g
coupling. We will attempt to analyse that question here by looking at ghost cop
tributions in lowest-order perturbation theory. This is itself of limited validity but e
give some indication of whether any success can be achieved, and what the sort
condition might be to obtain success to all orders.

2. The graviton-ghost propagator

Let us consider the gravitational field g, (x) and its associated tensors g*”, Ry, R,
R using the usual notion (De Witt 1964, 1967). We will attempt to quantize the fiel
as described by the Lagrangian density

L = /(—g)(R+aR*+4bR, R"). (Al
We expand the field variable as
gnv = nuv + huv

where h,, is the field to be quantized and 7, is the Minkowski background. To fi
order in h,, we have that ('t Hooft and Veltman 1974)

g =n,—h,
J-g=1+3h
where indices in h,, are raised or lowered by ,,. To the same order of approximatios
R = 11 17— 0L = g+
R? = (W2~ i)
RuvR‘” = %(hg‘uv - h;ix.vy - h;’l.n? + huv,;) (hg,uv - hz.vé - he,“a + huv,g)'

To equation (2.1) we must add a symmetry breaking term which fixes the appropﬁ}"
gauge; this we take to be the harmonic gauge, so we have to second order, in addito?
to that from equation (2.1), the symmetry breaking term

L' = — Yk, — 4R, ~3h3)

We: can thus calculate the second-order term in % in (L+LY) to be, to within terms
which are total derivatives (which we can neglect), the quadratic form

(L+LY = K P gy ™
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where
P 0 = [(a + b)Dz +_£1;'D]6aﬁ5yv + %(bDZ _%D)(éaaaﬂv + 5By5av)
ey

+(a+2b)8,048,6,~(a+b)1(0,50,0, + 0,,8.05)
—1b[0(8,, 050, + 6 5u0u0y + 620050, + 0540,0,) (2.2)

Jiere 8, = 0/ox* and [0 = 8,0 The total graviton propagator Q" 7 is thus the
2
mverse of equation 2.2):

s = HOLO708) = 0°* Py 23

The Lagrangian (2.1) which we are quantizing has quartic derivatives in both the
iteraction and the free-field parts. The former presents great difficulties due to the
apparent lack of an unambiguous ordering. A similar difficulty arises in the nonlinear
ciral theory (Taylor 1974 and references therein), but can be removed there, at least
o lowest order in perturbation theory, by careful use of the SU(2) x SU(2) symmetry
of the theory. The term proportional to §4(0), also arising from the derivative inter-
action, was shown by Taylor (1974) to be cancelled to all orders (see also Keck 1971).
We note that the 64(0) terms are automatically cancelled (Capper and Liebrandt 1973)
by the dimensional regularization method we use later, though that is no true justi-
fication for their neglect.

There are other difficulties associated with the quantization of equation (2.1)11,
but we will turn directly to the details of the Feynman propagator for equation (2.1)
without discussing these further, since they add little to the problem. In order to invert
Py we note that it would be possible to use the method of Rivers (1964), though since
that is only for fields with a given mass we will use a more direct approach here. We
;cpment it as a linear combination of a set of six fourth-rank tensors T; ... T, defined

i

Ty = ubgmy
Ty = Y558 + 67 34)

Tyebwy = §2Bpmpy

T = gmgeeh

T = gahgugy

TP = Y™ 080" + 500" + 57430 + 5P 9°¥).

# .
‘{;“h:hgiﬁm 'S;Ituation the oFdering problem is decidedly non-trivial. We have considered it briefly else-
s e fur:: out success e{ther for the [63(0)]? terms or the further 54(0) terms. Here we will not discuss
it e b ob;r‘ but will tgculy assume that they are cancelled completely by suitable conditions. Only
P S the ined a sensible theory at the S matrix or Green function level will we be at liberty to re-
W " wollgh .the operator structu.re to l.mravel the appropriate ordering arrived at implicitly.
by Pai andchlllsmer the framework in which we quantize. equation (2.1). This has earlier been dis-
) Stuatiog Ilenbeck (1950) and more recently t?y .Kiskls (1974), though the latter was only for the
ion mlcul;ﬁ f thfz part of t}.w action A qu?,dratlc in the fields @ is ®P® then the propagator for
Rl of Ty ons is thus tl'{e inverse of P, with the usual Feynman ie prescription. This agrees with
fieg Vior (1973, unpublished) in the zero-mass case. The particle interpretation of the quantized
dong thelil;;‘:ﬂo?i’exteuded from the zero-mass case of Taylor to the more general nonzero mass situation
thathery, an Dam and Veltman (1970), and Boulware and Deser (1972) though we will not go into
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These have the multiplication table contained in table 1. Since this table is closed it
thus possible to write the general expression

Q= :21 AT 24
and obtain a set of six equations from equation (2.3) and the form (2.4). Thi el of
equations is

(b0 ~400)A; = 1

2bA, = —%A,

BO+Ga+4b)0%4, +i0% 4+ [(a+ b0 +50)4, = 0

12 1 (15§
(Ba+4b)O%+30)4; +30°As+3046—(@+b)04, = 0
[—(Ba+4b)0)A; +(—4O)A,—(a+b)0A4, =0
—4[0A,—2b0A, = 0.
Table 1. Multiplication table of the tensors Tj,... T,.
T T, I T T T
T, 4T T, 4T, on On T
T L T I T, I T,
I 0L, T orn, 0O°n 0% O%
T, 4T, T 4T, O, 4dT, T,
T OL T Oon DL 0L O
Ts T, T T O, On 0% +iT
We may solve equations (2.5) to obtain
i+(a+b)
4= -4,
3+(3a+4b)0
(a+2b
A=A = ||,
3+(3a+4b)]
4. = 2a+2b) \A4,
T $+Ga+4b)O) O
A6 = —SbAz
4, = [O6O-17 (6
From equations (2.6) we see that there are three poles in Q which, in terms of the Four®
transform variable p with [J = —p?, are at
p* =0, —1/4b, 1/(6a+8b) @

The first of these is the physical graviton and the other two may be non-physical ¥
see from the coefficient 4, in equations (2.6) that there are only two poles in this %
with opposite coefficients. Since the pole at p?> = 0 is physical, that at pr= -1

must be unphysical due to its residue with the wrong sign. We cannot say it geneﬂ]
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leat p* = 1/(6a+8b) will also be unphysical since both its value and residue
mcbzo physical for suitable choice of the constants a and b. This is a special case of
;ymults of Pais and Uhlenbeck (1950) that ghosts and physical particles interlace
ther. . .
@Wican investigate the situation more fully by evaluating the residues of Q at the
et poles. These residues are given in table 2, where we note in addition that the

Table 2. Residues of the coefficients 4, ... A, in the complete graviton propagator 0 at
the three poles it possesses in momentum space.

Appropriate
Pole term A A: 45 A, As A
position in p*
0 4 —4  —8a+2b) —8(a+2b) 16(a+2b)/p* 32b
~1/4b -3 4 5 $p 32b
1/(6a +8b) -3 0 83a+4b)  Y3a+4b) 4(3a+4b® O

rm A, actually has a double pole. The form of the graviton propagators near each

ofthese poles is thus:
f) nearp* = 0
0 2 8(a+2b)
g ™ ;2' qavrlﬂu + nzunﬂv - r’aﬁnuv) - —pi_(”aﬁpupv + nuvpapﬁ)
16(a+ 2b) 8b
—_szjz—_papﬁpupv + ?(naupt}pv + navapu + nﬁupapv + nﬁvpapu) (28)

(i) near p* = —1/4b
0, ~ _L 2 8
e T (GMagur = N3y = Mas¥1 ) + 3D gD Dy + M uD el g)

[
— 502 D.DsD Py — 4D(12uD5Dy + NasPpP o+ M guPaby+ N5uPaP,)] 29)
(ii) near p? = 1/(6a+ 8b)-

ppn b 1
Y pz_[l/(6a+8b)][§}7aﬂ}7‘uv+%(3a+4b)(naﬁpupv+’7uvpzpﬂ)

. —43a+4b)Y*(p.pgp,p.)]- (2.10)
¢ aan rewrite the term in square brackets in (2.9) in the more recognizable form
2
3040,,-0,,0,,-0,,0,, (2.11)

°P°rator'f;1:mg?41bp”pv' .The expressi02n (2.11) is the negative of the projection
s hag directp rh icle of spin 2 and (mass)” of — 1/4b. The residue of Q at p> = —1/4b
an 197, Boul\I:/ ysical significance as massive spin 2 coupling (van Dam and Velt-
: NSitivg’ S are anq Deser 1972), thot}gh possibly for a tachyon-like particle if b
) nce the residue has the opposite sign to that at the massless pole then the

Cle at p2 — l . .
Mt gy be elimin a/ted,ls ghost-like even if it has a real mass, when b is negative. It
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The particle at the pole p> = 1/(6a-+8b) has a real mass if
3a+4b > 0. o

Under that condition and the requirement that the graviton is only coupled to acop
served matter stress—energy tensor T,,, (since otherwise inconsistencies would arige
the coupling to the zero-mass pole (Weinberg 1964)) we see that the residue at
third pole has the correct sign and corresponds to a massive scalar particle coupledy
the trace of T,,. Thus there is no good physical reason for requiring this pole to
absent if inequality (2.12) can be satisfied. We will turn, then, to the question of gy,
cellation of the residue in Q at p> = — 1/4b, to find if any conditions on a and b afjpy
this to be achieved.

3. Ghost killing for gravity with scalar mesons

We consider first the self-interacting scalar meson Lagrangian
L = ,/(-g)(R+aR*+ bR, ,R* +33,00,0g" —3m*®* - 11¢*). 31

We will discuss the ghost-graviton contributions to lowest order in 4 and the grav
tational coupling constant; if these cannot be made to cancel then it is not expecs
that higher-order contributions will help except by some miracle. The relevant lowes:
order vertices from equation (3.1) are obtained by making the substitution of g, b
Nuv+h,,, as discussed at the beginning of § 2, to give

L = (14+3h+.. )[(30,90,D(n* — i)~ im?®? — L@, 63
Thus the lowest-order graviton-four-meson vertex of figure 1 is proportional to

Abgg (33
and the graviton-two-meson vertex of figure 2 is proportional to

3026l —m* —(k k)] +3kykog (4

where k; and k, are the momenta of the two mesons and (x, §) is the tensor label oft
graviton vertex.

Let us consider the process of two-meson scattering with single-graviton exchag
as described by figure 3. In lowest order only (3.4) will contribute, with value pr>
portional to

2
{kyakag—Boglm? + (k ko) Q™P T Kb, — B, (m+ KiK)] o
where
kl +k2 = ki +ké = p.
& & K
_____ B b__-;orﬁ .
& &, k'
Me 1. Four-meson—one- Figure 2. Two-meson—one- Figure 3. Two-meso3 scattsr
graviton vertex, where broken graviton vertex. with single-graviton exchat®

lines represent gravitons, wavy
lines represent mesons.
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take
" k, = (E, k), k, = (E, —k), ki = (E k'), (E, k') = k;

i in (3.5) in-
_ k! and E = (k*+m?)Y2 1t is easy to see that the only term in (

m(k-;;lll)(z ‘a;'r;es from k, .k, ﬂQ“”‘”k} ukév with value in terms of the expansion (2.4)
d
Afe )+ 341K KD ek + (k k) (ko)) — As(ki k) (kip)(k3p)
it}

— Ayt kd) (k1 p) (kop)+ As(k, P)(k2p) (k1 p)(K3p) — $46[(k1 k1) (k2P)(Kip)

+(k;k2)(kp)(kop) + (k1K) (k1 p)(k3p)+(kok2) (k1 PY(k2D)]. (3.6)

Tie oaly term in (3.6) depending on (kk')? is that involving A,, and is equal to

P +m =k K+ (R m? k)] = AR+ m?) o+ (K k2. (3.7
Soce the term (k . k')? is independent of the other term in equation'(3.7) the.:n it clearly
s 10t possible to remove the pole at p? = ~1/4b in A, by any possible choice of a and

b, In detail if we take

k.k*=k?>cos ©®
then the coefficient of cos? © in equation (3.6) is given by the last term of equation
(37, and is equal to

2

L - (3.8)

pi(p*+3b)
where p? = 4(k*+m?). Thus at the ghost pole position p?> = —1/4b the residue in
{38) of the ghost pole is

G+4bm?)
and this can be made to vanish only if
b= —(1/16m?). (3.9)

The remaining residue at the pole can also be found to vanish identically if account is
teken that equation (3.9) corresponds to the condition

k* = 0. (3.10)
For then we obtain ‘

ki gQo8 20k k3, = mM{( Ay + A, — 8m2 A+ 16m* A5 — 4m2A)
¥hich combined with the residues in table 2 gives

mi(~4+4+§+8-8) = 0.

]:he resldlles at pZ =

i —1/4b arising from the remaining terms in (3.5) are also zero
% they have values

QM:16A1+4A2‘8P2A3+(P2)2A5“Per = —8416+32+§-8=0

Q'unki,,ké =m?(4q 204;  As A
v=mdd, + 4 A5 26| 18444208 gy =
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The residues at p? = 1/4b arising from the remaining terms in (3.5) are also 2m
follows immediately from equation (2.9). Similarly the contribution from the Feynny
diagram arising by single-graviton exchange as shown in ﬁgu;e 4 has zero re
though now the pole is unphysical at cos ©® = (1+ 2m?/k?), outside the physical tegion
The same situation occurs for the diagram of figure 5.

Figure 4. Two-meson scattering with single-graviton  Figare 5, Two-meson scattering with single-gravigs
exchange exchange.

If we turn to the effect of the interaction i®* giving the vertex (3.3), we find
the diagrams of figures 6 and 7 are now appropriate. The first is proportional o
Quanvk 1.k, and the second to Q,, 4. These both have zero residues at PP =-1%
under the choice (3.9), as we showed in the previous paragraph. Similar cancellation
will occur for any higher-power interaction \/(—g)a,®" added to (3.1). If n>4tis
can only produce a coupling to a single graviton which in lowest order is proportiozd
to (3.3), and hence has zero residue if equation (3.9) is satisfied. Since this gives
restriction on the constant a we can satisfy inequality (2.12) if in addition

{340

> >

Figare 6. Meson-meson inelastic scattering through  Figure 7. Four-meson scattering with single-gravid
single-graviton exchange. exchange.

We conclude that there are no ghost difficulties from equation (3.7) in Jowest-016d
(tree) graphs if (3.9) and (3.11) are both satisfied.

In order to further test the possibility of ghost killing we consider the second-ordd
terms in the expansion of the Lagrangian (3.1) in powers of the quantized gravi®
field h,,. We will choose a modification of the linear expansion, now taking the quast
field variable H*" to be defined by

g\ =8 = "'+ kH* ol
so that in order h?
V=g =1+ Tr H+4[4Tr H?>-Tr H2). (3

If we use equations (3.12) and (3.13) in (3.1), the interaction term with two m€=5°1‘5aﬁd
two gravitons is solely

—§m*Q[Y(Tr H? = Tr H2). ¢4
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- jads 10 the contribution to the two-meson plus one-graviton scattering process
Jige which has solely a single-graviton intermediate state, proportional to

eﬂv(kl’;)quaﬁeaﬁ(k:li) (3.15)
e .,
_____ [
kZ/’k; k?\

Figure 8. Two-meson-one-graviton scattering with single-graviton exchange.

sere b, k! are the initial and final graviton momenta with polarization tensors e*’(k5)
ol (K!) respectively. We choose for these e*(k;, 4) ’(ks, 4) and e*(k3, o) €f(k}, o)
mpectively, where 4 and o take the values 1, 2 corresponding to the two possible
icty states of the gravitons. We take these vectors to be

elky, 1) = (0, ey), e(ky,2) = (0,ey) where e, .ky = e,.k; = 0.

(toosing / = 1, ¢ = 2 we thus need to evaluate from (3.5) the quantity Q,,,,, and
warthe ghost pole at p> = — 1/4b this takes the value, with p = (m,0), of

2
(p*+3b)

Thusthe residue at the pole in (3.16) is nonzero, so it cannot be cancelled by any further
wnditions on a and b. Thus the graph of figure 8 has a ghost contribution which cannot
l‘xremoved internally. Nor will it be cancelled by the contributions from the graphs of
fure 9. This can be seen from the fact that all the graphs of figure 9 have at least one
R of one graviton and two mesons. What is more, if all external particles are on
tr mass shell then at the ghost pole the two mesons at the vertex under consideration
wlalso be on-shell. This is immediate, since the ghost pole is at p? = 4m?, if the mesons
irexternal, and also if one of the mesons is external, since it is associated in all the
@ under consideration with on-mass-shell mesons. Thus for the vertices in the
#ond graph of figure 9 we have

[$—2(e,e,)*] + non-singular contribution. (3.16)

ki = ki = (m,0), k3 = (0,0) (3.17)

k= ki + kL = (m, 0).
Each . .
vertex attached to the internal graviton propagator next to it has then the value
QuvagGm 1+ ki 3 ).

§ .
% near the pole in p? at 4m2, we have from (2.9) and (3.17) that

b~ 2
7 =) = 21,0+ 304p,2, + P*1,0) — 5525 p,p, ~ 16bp,p,] = 0
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r- + - + -- + i S
/oy ? ] K
’I // \\ ,’ N ” ' ’
_— - + -x"
o S S
\ J S VA
v v ‘
Y

i

Figure 9. Two external graviton corrections to two-meson scattering through singe
graviton exchange.

and

2 1 1
Qumﬂkgak‘.l’ﬁ ~ m(%{k}ké)nuv - 2kiukév - W(k}ké)pppv - W(kip)(kép)ﬂuv

1 1
—m(pki)(pké)p,‘pv+W(kip)p(akém+(k%p)p(ak}ﬁ) =0.

Thus each vertex has a zero which is quadratic in the momenta of the external particks
as they go to zero at the ghost pole. What is more the vanishing meson denominators
in the 2nd, 3rd, 4th, 5th, 6th and 7th graphs of figure 9 are also compensated for qua¢
ratically in the momenta by each vertex; for example in the 2nd graph of figure 9 ther
are two denominators which each introduce an inverse square power of momenta but
there are four vertices which completely cancel this effect to give an overall zero cor
tribution. For this reason it is clear that all the graphs of figure 9 give no contributios
on-mass-shell to the 2-meson-1-graviton S matrix element. Only figure 8 is left

4. Ghost killing for scalar mesons

Earlier work ('t Hooft and Veltman 1974, Capper and Duff 1970, Capper et al 19%
Deser and van Nieuwenhuizen 1974a, b, De Witt 1964, 1967, Nouri-Moghadam and
Taylor 1975a, b) on the quantization of Einstein’s gravitational theory has shown tha!

it is necessary to consider further terms in addition to those in (3.1). In particular t
additional contribution

(D, D*D)2. {4

arose as a counter term necessary to remove certain divergences ('t Hooft and Veltmal
1974, Nouri-Moghadam and Taylor 1975a, b). This term will produce ghost mﬁf”‘s
and so it is necessary to extend the discussion of the previous sections to this situatio
If we consider purely the graph of figure 10 then we can dispense with the gravitati®
field altogether, so we are left with the Lagrangian

L = ¢(0,00)* +3(6,0)2 — m?®? 2
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o some real constant ¢. The meson propagator is thus

[e?)? +p*—m*]7!

shich can be written in partial fractions as
(s —0) PP =) = (PP~ )] 43)
<iere 1. are the roots of

ex*+x-mt =0
so have values

1y = [~ 1£(1+4m?c)). 44)
2c

We note that the root «, is the one which takes the value m? as ¢ —» 0. It is clear from
43) that the pole at p? = a_ corresponds to a ghost particle with the wrong sign of the
wsidue as compared with the pole at p* = «... This former pole is also tachyon-like
for any value of ¢, so it clearly has to be cancelled. However the contribution from
fiure 10 gives no chance of such cancellation since the residue at the pole is a constant
woportional to (¢, —a_)”* to within factors such as 2, etc. There is no additional
Betor of &2 to cancel the pole by suitable choice of ¢. Thus the ghost pole is definitely
present in lowest order. We conclude that the Lagrangian of equation (4.2) is physically
msatisfactory.

Let us finally turn to the question as to whether or not the term (4.1) is forced on us
vhen starting from the Lagrangian (3.1). This can be estimated by power counting,
wing the complete form of the graviton propagator (2.4) with its (p*)~* behaviour at
brge p°. The counter term itself arose originally ('t Hooft and Veltman 1974) from
bops such as that in figure 11 where the internal propagators for meson and graviton
ach have asymptotic behaviour (p?)~*, and the two derivatives at each vertex were
dlowed to act on the external field ® on each external line. When the graviton propa-
@ior behaves asymptotically as (p?)”2 such a term is no longer divergent, so that its
tunter term is not required.

Fi . .
H:::f.h Three-meson scattering through single-  Figure 11. Single-graviton self-energy correction to
Caange. meson propagator.

The griwton gropagator given by equations (2.4) and (2.6) appears only to behave
togfg:u as.(p )“‘, due to the terr_n ATy 3 How;ver this term does not contribute
Hopase 8¢ nvariance. The effective vertices arising at each end of the graviton
. Pa8alor will be transverse, and so give no contribution (this can be seen in a par-
mmenial;g:;when the gravitonzp{c;pagato.r couples directly to the conserved energy—
5 the It,lsor). “Ijhus the (P )™ behaviour of the graviton propagator is justified.
10t g agrangian (3.1) is e)'(pected to be closed under renormalization effects.
Rally that it is not possible to add further polynomial interactions to (3.1
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for renormalizability of the theory, so that as far as the s.cala.r .meson‘is concerned gy
restrictions on the range of its interactions from renormalizability are identical to

occurring without gravity being present.

5. Conclusions

We have analysed the quantized field theory of scalar mesons interacting with gravitg
through a non-minimal Lagrangian in the gravitational ﬁelld suggestgd by the receg
attempts to renormalize Einstein’s Lagrangian. The ghost in t%le graviton propagay
has been found to be present in a certain lower-order gra.ph which cannot be cancelly
by any others of the same order. The ghost contribution co-rresponds t0 a pokea
threshold energy. If it were proposed to cancel this ghost cont.nbutxon by higher-ordy
graphs, this could only be achieved if the gravitational coupling constant took a par
ticular value. This may indeed be the case, but it would seem a very difficult mechani
to expect to occur, and certainly difficult to investigate further.

If such a ghost killing mechanism does work we have shown that the usual renoma-
izability criteria for the meson self-interaction have to be reserved unless addition
ghost killing occurs for a meson ghost arising from higher-order counter terms.

Our general conclusion is that the Einstein scalar meson Lagrangian modified o
include non-minimal counter terms at the single-loop level is physically unsatisfactoy
because of ghost contributions. We will have to consider other gravitational inte
actions, especially of photons and fermions, before we can finally conFlude that
guantization of the Einstein matter Lagrangian is impossible. We will discuss tha
elsewhere.
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